首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24892篇
  免费   480篇
  国内免费   268篇
测绘学   625篇
大气科学   1960篇
地球物理   5384篇
地质学   8722篇
海洋学   2038篇
天文学   5205篇
综合类   41篇
自然地理   1665篇
  2020年   137篇
  2019年   127篇
  2018年   293篇
  2017年   268篇
  2016年   415篇
  2015年   301篇
  2014年   425篇
  2013年   1179篇
  2012年   506篇
  2011年   785篇
  2010年   642篇
  2009年   912篇
  2008年   837篇
  2007年   798篇
  2006年   825篇
  2005年   717篇
  2004年   748篇
  2003年   713篇
  2002年   713篇
  2001年   587篇
  2000年   601篇
  1999年   574篇
  1998年   546篇
  1997年   560篇
  1996年   418篇
  1995年   450篇
  1994年   431篇
  1993年   401篇
  1992年   364篇
  1991年   323篇
  1990年   375篇
  1989年   278篇
  1988年   328篇
  1987年   357篇
  1986年   312篇
  1985年   471篇
  1984年   511篇
  1983年   517篇
  1982年   412篇
  1981年   407篇
  1980年   422篇
  1979年   370篇
  1978年   386篇
  1977年   340篇
  1976年   364篇
  1975年   335篇
  1974年   374篇
  1973年   363篇
  1972年   228篇
  1971年   183篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
991.
992.
993.
In 2011, the discovery of shatter cones confirmed the 28 km diameter Tunnunik complex impact structure, Northwest Territories, Canada. This study presents the first results of ground‐based electromagnetic, gravimetric, and magnetic surveys over this impact structure. Its central area is characterized by a ~10 km wide negative gravity anomaly of about 3 mGal amplitude, roughly corresponding to the area of shatter cones, and associated with a positive magnetic field anomaly of ~120 nT amplitude and 3 km wavelength. The latter correlates well with the location of the deepest uplifted strata, an impact‐tilted Proterozoic dolomite layer of the Shaler Supergroup exposed near the center of the structure and intruded by dolerite dykes. Locally, electromagnetic field data unveil a conductive superficial formation which corresponds to an 80–100 m thick sand layer covering the impact structure. Based on the measurements of magnetic properties of rock samples, we model the source of the magnetic anomaly as the magnetic sediments of the Shaler Supergroup combined with a core of uplifted crystalline basement with enhanced magnetization. More classically, the low gravity signature is attributed to a reduction in density measured on the brecciated target rocks and to the isolated sand formations. However, the present‐day fractured zone does not extend deeper than ~1 km in our model, indicating a possible 1.5 km of erosion since the time of impact, about 430 Ma ago.  相似文献   
994.
Large water‐sample sets collected from 1899 through 1902, 1907, and in the early 1950s allow comparisons of pre‐impoundment and post‐impoundment (1969 through 2008) nitrogen concentrations in the lower Missouri River. Although urban wastes were not large enough to detectably increase annual loads of total nitrogen at the beginning of the 20th century, carcass waste, stock‐yard manure, and untreated human wastes measurably increased ammonia and organic‐nitrogen concentrations during low flows. Average total‐nitrogen concentrations in both periods were about 2.5 mg/l, but much of the particulate‐organic nitrogen, which was the dominant form of nitrogen around 1900, has been replaced by nitrate. This change in speciation was caused by the nearly 80% decrease in suspended‐sediment concentrations that occurred after impoundment, modern agriculture, drainage of riparian wetlands, and sewage treatment. Nevertheless, bioavailable nitrogen has not been low enough to limit primary production in the Missouri River since the beginning of the 20th century. Nitrate concentrations have increased more rapidly from 2000 through 2008 (5 to 12% per year), thus increasing bioavailable nitrogen delivered to the Mississippi River and affecting Gulf Coast hypoxia. The increase in nitrate concentrations with distance downstream is much greater during the post‐impoundment period. If strategies to decrease total‐nitrogen loads focus on particulate N, substantial decreases will be difficult because particulate nitrogen is now only 23% of total nitrogen in the Missouri River. A strategy aimed at decreasing particulates also could further exacerbate land loss along the Gulf of Mexico, which has been sediment starved since Missouri River impoundment. In contrast, strategies or benchmarks aimed at decreasing nitrate loads could substantially decrease nitrogen loadings because nitrates now constitute over half of the Missouri's nitrogen input to the Mississippi. Ongoing restoration and creation of wetlands along the Missouri River could be part of such a nitrate‐reduction strategy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
995.
There are thousands of seeps in the deep ocean worldwide; however, many questions remain about their contributions to global biodiversity and the surrounding deep‐sea environment. In addition to being globally distributed, seeps provide several benefits to humans such as unique habitats, organisms with novel genes, and carbon regulation. The purpose of this study is to determine whether there are unique seep macrobenthic assemblages, by comparing seep and nonseep environments, different seep habitats, and seeps at different depths and locations. Infaunal community composition, diversity, and abundance were examined between seep and nonseep background environments and among three seep habitats (i.e., microbial mats, tubeworms, and soft‐bottom seeps). Abundances were higher at seep sites compared to background areas. Abundance and diversity also differed among microbial mat, tubeworm, and soft‐bottom seep habitats. Although seeps contained different macrobenthic assemblages than nonseep areas, infaunal communities were also generally unique for each seep. Variability was 75% greater within communities near seeps compared to communities in background areas. Thus, high variability in community structure characterized seep communities rather than specific taxa. The lack of similarity among seep sites supports the idea that there are no specific infauna that can be used as indicators of seepage throughout the northern Gulf of Mexico, at least at higher taxonomic levels.  相似文献   
996.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
997.
Questions persist about interpreting isotope ratios of bound and mobile soil water pools, particularly relative to clay content and extraction conditions. Interactions between pools and resulting extracted water isotope composition are presumably related to soil texture, yet few studies have manipulated the bound pool to understand its influence on soil water processes. Using a series of drying and spiking experiments, we effectively labelled bound and mobile water pools in soils with varying clay content. Soils were first vacuum dried to remove residual water, which was then replaced with heavy isotope-enriched water prior to oven drying and spiking with heavy isotope-depleted water. Water was extracted via centrifugation or cryogenic vacuum distillation (at four temperatures) and analysed for oxygen and hydrogen isotope ratios via isotope ratio mass spectrometry. Water from centrifuged samples fell along a mixing line between the two added waters but was more enriched in heavy isotopes than the depleted label, demonstrating that despite oven drying, a residual pool remains and mixes with the mobile water. Soils with higher clay + silt content appeared to have a larger bound pool. Water from vacuum distillation samples have a significant temperature effect, with high temperature extractions yielding progressively more heavy isotope-enriched values, suggesting that Rayleigh fractionation occurred at low temperatures in the vacuum line. By distinctly labelling bound and mobile soil water pools, we detected interactions between the two that were dependent on soil texture. Although neither extraction method appeared to completely extract the combined bound and mobile (total water) pool, centrifugation and high temperature cryogenic vacuum distillations were comparable for both δ2H and δ18O of soil water isotope ratios.  相似文献   
998.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
999.
Zipper reconnection has been proposed as a mechanism for creating most of the twist in the flux tubes that are present prior to eruptive flares and coronal mass ejections. We have conducted a first numerical experiment on this new regime of reconnection, where two initially untwisted parallel flux tubes are sheared and reconnected to form a large flux rope. We describe the properties of this experiment, including the linkage of magnetic flux between concentrated flux sources at the base of the simulation, the twist of the newly formed flux rope, and the conversion of mutual magnetic helicity in the sheared pre-reconnection state into the self-helicity of the newly formed flux rope.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号